SELF-TAUGHT LEARNING: TRANSFER LEARNING FROM UNLABELED DATA

Richard Wen rwen@ryerson.ca April 7, 2017

Article Summary for Knowledge Discovery Course Instructed by Dr. Cherie Ding

A

OUTLINE

- 1. Introduction
- 2. Methods
- 3. Results
- 4. Discussion and Conclusion

INTRODUCTION

LEARNING

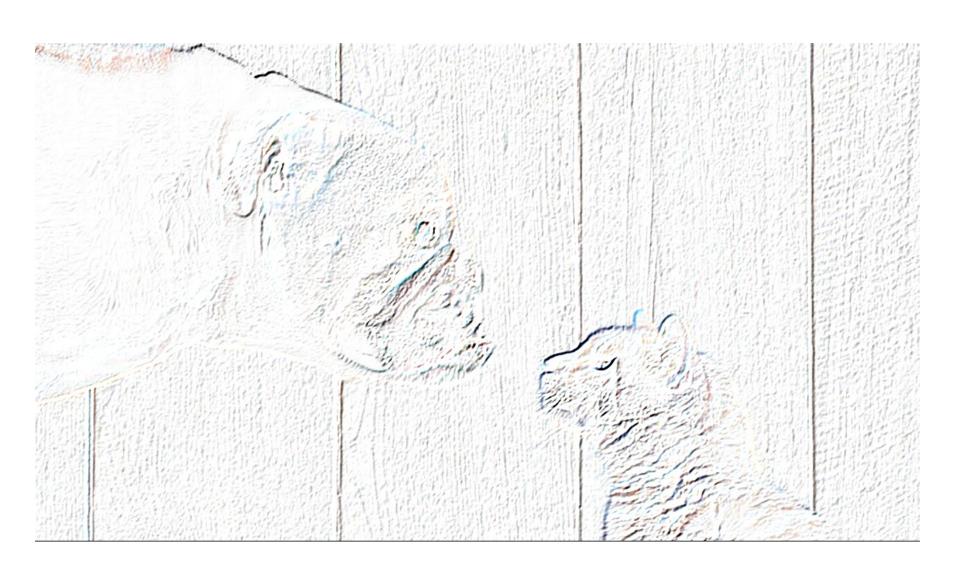
WHAT WE SEE

WHAT THE COMPUTER SEES

28	8	41	46	171	230	151	181	67	174	51	206	22	20	49	10	128	202	164	23	178	159	102	122	121
84	100	203	3	180	41	123	107	235	148	48	219	15	221	244	71	123	150	20	71	130	62	118	7	207
216	181	156	122	238	74	106	181	73	5	185	153	189	68	14	139	234	242	229	214	108	199	117	62	191
245	240	11	118	35	213	52	120	47	124	208	70	61	83	23	10	190	37	7	99	122	248	228	191	217
92	141	24	107	75	239	186	187	76	253	236	135	232	180	232	171	217	106	47	161	100	130	101	33	209
250	30	123	158	111	142	126	234	98	68	129	99	54	157	28	190	81	8	51	112	58	4	95	66	168
27	99	131	159	96	57	81	8	113	24	125	95	248	130	87	93	9	253	149	50	103	235	166	256	90
255	85	157	21	171	60	105	33	129	112	183	25	253	200	30	141	228	109	6	251	32	11	135	79	158
68	88	11	253	127	181	130	167	205	182	52	75	95	193	70	88	86	131	101	97	30	117	126	64	207
239	42	106	204	59	104	2	251	77	73	97	79	127	60	118	173	194	221	194	249	22	185	249	17	23
250	223	199	138	250	64	151	226	242	55	139	142	180	133	155	241	225	150	154	144	188	25	166	238	42
80	97	132	180	1	57	252	215	200	164	81	83	153	128	148	163	12	240	139	51	30	164	256	14	79
37	193	116	138	25	66	169	104	21	239	86	246	110	190	147	125	76	146	241	113	134	245	45	185	173
237	76	160	63	50	142	57	11	112	43	253	162	184	101	107	55	162	19	41	46	10	222	69	112	234
192	58	156	114	111	18	15	183	125	254	68	192	142	98	248	26	200	101	60	244	100	83	79	220	81
231	248	187	138	1	210	197	63	251	79	107	143	97	53	190	251	100	63	159	48	238	171	67	33	34
232	232	206	116	114	177	224	24	237	204	73	166	56	104	133	39	222	35	236	37	200	194	125	1	143
158	118	22	122	256	33	75	10	3	186	56	220	110	218	29	73	161	54	53	143	30	224	81	51	57
229	56	8	69	42	220	209	62	92	131	95	140	179	11	130	19	37	180	16	6	181	99	135	205	61
124	250	8	192	196	25	221	233	24	123	89	190	18	180	85	4	195	95	103	48	90	212	102	33	151
95	186	224	49	214	76	220	153	135	247	133	18	17	88	107	212	141	203	197	247	46	113	234	67	50
104	247	107	210	56	2	72	169	214	83	230	241	247	109	247	181	10	83	156	112	8	48	214	107	54
110	133	73	63	116	57	195	184	172	81	175	128	20	180	176	207	13	215	136	129	122	42	92	137	76
89	192	245	84	12	130	43	56	126	70	153	173	32	102	94	194	76	41	46	19	207	120	253	12	206
5	123	5	220	154	161	90	170	71	237	72	200	80	174	234	205	181	93	38	23	225	248	177	211	31
33	162	98	21	104	40	49	227	218	3	180	127	237	18	90	85	154	241	88	192	217	201	216	228	223
49	96	122	226	183	75	160	117	167	251	36	219	107	63	213	85	56	228	215	125	121	74	39	176	182
110	1	211	209	24	238	156	72	34	136	106	219	126	20	194	201	214	140	171	198	173	126	253	204	175
21	216		18	64	178	130	236	237	123	202	230	173	183	152	10		140	79	107		4	17	168	84
150	44	128 30	91		224	171	59		104			80	90		252	38 68	84	69		131		245	103	116
				132				73		143	112			224					39	203	29			
170	46	236	102	183	168	115	103	80	255	219	59	89	241	189	252	183	181	84	3	85	50	232	117	98
29	18	125	206	222	179	86	127	204	46	192	24	180	57	152	162	22	9	234	109	130	216	172	186	135
188	196	75	234	136	191	187	88	49	184	167	240	151	176	228	98	145	191	97	225	83	47	166	102	78
206	118	32	250	216	226	108	104	244	135	108	66	31	243	248	208	160	68	116	122	125	177	45	164	75
24	34	80	70	37	48	209	220	159	130	195	122	150	218	173	91	40	26	75	54	231	49	160	9	172
57	52	17	209	197	217	233	210	178	199	31	29	154	116	10	210	118	9	18	27	52	256	110	55	55
203	171	185	240	62	117	49	93	121	66	170	230	160	24	16	248	104	8	157	117	157	238	99	225	115
53	203	100	33	43	49	141	16	49	241	126	28	21	234	247	87	56	228	179	218	94	190	96	35	191
85	230	66	223	20	155	237	19	31	35	19	203	143	111	236	97	53	230	83	149	79	90	39	51	201
2	186	64	127	42	93	231	250	61	227	180	16	207	44	29	209	131	200	28	49	202	50	108	51	20

169	53	245
44	92	127
128	229	40
5	244	255
3	116	39
67	146	83
55	215	56
193	87	201
202	129	206
7	27	234
44	69	1
175	53	159
98	238	2
36	174	32
204	57	192
2	234	25
193	102	150
54	156	253
181	73	224
248	113	228
91	125	226
127	175	66
97	27	195
148	255	256
144	31	239
113	44	204
75	67	202
245	53	213
242	163	41
63	45	92
194	221	217
132	153	152
247	180	90
84	23	99
137	13	163
234	251	27
235	253	85
205	219	65
55	107	32
P+08	222	96

HIGHER LEVEL FEATURES



WHY?

- Labeled data is expensive
- Abundance of unlabeled data
- Less restrictive data requirements

METHODS

TWO STAGES

- 1. Learn representation with unlabeled data
- 2. Apply to labeled data for classification

d data on

LABELED TRAINING DATA

A set of *m* training examples with:

- x as *n*-dimension feature vectors
- y as corresponding labels {1.. C}
- *l* indicating a labeled example

$$\left\{ (x_l^{(1)}, y^{(1)}) \dots (x_l^{(m)}, y^{(m)}) \right\}$$

Raina et al. (2007)

11

th: ors C}

 $\in \mathbb{R}^n$

UNLABELED TRAINING DATA

A set of *k* training examples with:

- *x* as *n*-dimension feature vectors
- *u* indicating an unlabeled example

$$\left\{x_u^{(1)} \dots x_u^{(k)}\right\} \in \mathbb{R}^n$$

Raina et al. (2007)

12

n: s ple

LEARNING BASES (BASIC ELEMENTS)

Optimize *aj* weights and *bj* bases to:

- 1. Reconstruct *xu* as weighted linear combo of bases
- 2. Encourage *aj* to be sparse (mostly zero)

$$\begin{aligned} \min_{i} \min_{j \in b, a} \sum_{i} \left\| x_{u}^{(i)} - \sum_{j} a_{j}^{(i)} b_{j} \right\|_{2}^{2} + \beta \\ \text{such that} \left\| b_{j} \right\|_{2} \leq 1, \forall j \in 1, \dots s \end{aligned}$$

Raina et al. (2007)

 $\beta \left\| a^{(i)} \right\|_{1}$

LEARNING FEATURES

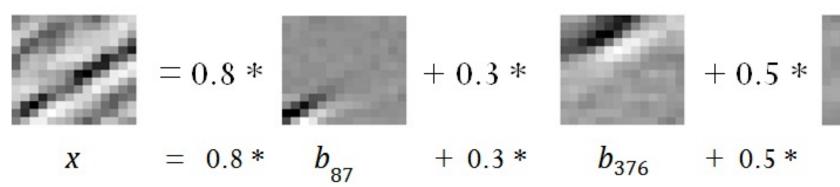
Using *bj*, compute sparse features from labeled data as input to supervised algorithms

$$\hat{a}(x_{l}^{(i)}) = argmin_{a} \left\| x_{l}^{(i)} - \sum_{j} a_{j}^{(i)} b_{j} \right\|_{2}^{2} + \beta_{j}^{2}$$

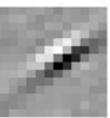
Raina et al. (2007)

 $\beta \left\| a^{(i)} \right\|$

SPARSE FEATURES EXAMPLE



Raina et al. (2007)



RESULTS

CLASSIFICATION EXPERIMENTS

- Principal Component Analysis (PCA) vs Raw vs
 Sparse Coding (SC) Features
- Support Vector Machine (SVM)
- Gaussian Discriminant Analysis (GDA)

17

'**S** Raw vs

HANDWRITTEN DIGITS AND ENGLISH CHARACTERS

- Improvements when SC used with Raw for characters
- SC did not perform as well alone for characters
- SC generally performed better for digits
- Improvements ranged from ~1-7%

REUTERS WEBPAGES AND ARTICLES

- SC generally performed well for webpages and articles
- Improvements ranged from ~8-21%

LES es and

KERNELS (SIMILARITY FUNCTIONS)

- Compared against linear, polynomials, Radial Basis Function (RBF)
- Outperforms standard kernel choices above
- Improvements ranged from ~6-13%

DISCUSSION AND CONCLUSION

DISCUSSION

- Can be applied to different domains
- Can have more basis vectors bj than n-dimensions
- Unlabeled data must still have some structure
- Other algorithms can be modified for self-taught learning

imensions ucture f-taught

CONCLUSION

- Find higher level representations of patterns
- Use of inexpensive unlabeled data
- Self-taught learning as a machine learning framework

REFERENCES

• Raina, R., Battle, A., Lee, H., Packer, B., & Ng, A. Y. (2007). Self-taught learning. Proceedings of the 24th international conference on Machine learning - ICML '07. doi:10.1145/1273496.1273592

