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WHY?

e Labeled datais expensive
e Abundance of unlabeled data
e Lessrestrictive data requirements
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METHODS
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TWO STAGES

1. Learn representation with unlabeled data
2. Apply to labeled data for classification
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LABELED TRAINING DATA
A set of m training examples with:

e x as n-dimension feature vectors
e yas corresponding labels{I.. C}
e [indicating a labeled example

1 m m n
{(xl( ),y(l))... (a:l( ),y( ))} cR

Raina et al. (2007)
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UNLABELED TRAINING DATA
A set of k training examples with:

e x as n-dimension feature vectors
e yindicating an unlabeled example

{xff}) . x&k)} cR"

Raina et al. (2007)
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LEARNING BASES (BASIC ELEMENTS)
Optimize aj weights and bj bases to:

1. Reconstruct xu as weighted linear combo of bases
2. Encourage aj to be sparse (mostly zero)

2

MINIMizey , Z :U?(j) — Z Q§i)bj + 0 |
J 2
<1,Vg5el,...s

NG

1

such that ||b;||.,

Raina et al. (2007)
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LEARNING FEATURES

Using bj, compute sparse features from labeled data
as input to supervised algorithms

&(xl(z))) = argmin, :z:l(i) — Z a§i)bj + 5

Raina et al. (2007)
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SPARSE FEATURES EXAMPLE

X ~ 0.8% +03% by  + 0.5% by,

Raina et al. (2007)
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RESULTS
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CLASSIFICATION EXPERIMENTS

e Principal Component Analysis (PCA) vs Raw vs
Sparse Coding (SC) Features

e SupportVector Machine (SVM)

e Gaussian Discriminant Analysis (GDA)
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HANDWRITTEN DIGITS AND ENGLISH CHARACTERS

e Improvements when SC used with Raw for
characters

e SCdid not perform as well alone for characters

e SC generally performed better for digits

e Improvements ranged from ~1-7%
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REUTERS WEBPAGES AND ARTICLES

e SC generally performed well for webpages and
articles
e Improvements ranged from ~8-21%
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KERNELS (SIMILARITY FUNCTIONS)

e Compared against linear, polynomials, Radial Basis
Function (RBF)

e Qutperforms standard kernel choices above
e Improvements ranged from ~6-13%
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DISCUSSION AND CONCLUSION
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DISCUSSION

e Can be applied to different domains

e Can have more basis vectors bj than n-dimensions

e Unlabeled data must still have some structure

e Other algorithms can be modified for self-taught
learning
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CONCLUSION

e Find higher level representations of patterns

e Use of inexpensive unlabeled data

e Self-taught learning as a machine learning
framework
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